NPS-53-84-0003
 NAVAL POSTGRADUATE SCHOOL Monterey, California

SOURCES OF ERROR IN OBJECTIVE ANALYSIS
by
Richard Franke

May 1984

Technical Report For Period

October 1983 - March 1984

Approved for public release; distribution unlimited

Prepared for:
Naval Environmental Prediction Research Facility interey, CA 93943
R. H. Shumaker

Commodore, U. S. Navy
Superintendent
D. A. Schrady Provost

This work was funded by the Naval Environmental Prediction Research Facility, Monterey, CA under Program Element 61153N, Project (none), "Interpolation of Scattered Meteorological Data".

Reproduction of all or part of this report is authorized.

16. Distribution statement (of this Roport)

Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abstract ontered in Block 20, If differont from Roport)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on severse side lf neceecary and ldentlify by block number)

Objective analysis Barnes' method

Optimum interpolation
Thin plate splines

Splines
Statistical interpolation
20. ABSTRACT (Confinue on reverse alde if neceseary and identify by block number)

The error in objective analysis methods that are based on corrections to a first guess field is considered. An expression that gives a decomposition of the error into three independent components is derived. To test the magnitudes of the contribution of each component a series of eomputer sinulations was condreted. Grid-to-obscrvation point intexpolation schemes considered ranged from simple piecewise linear functions to highly accurate spline functions. The observation-to-grid interpolation methods
considered included most of those in present meteorological use, such as optimum interpolation and successive corrections, as well as proposed schemes such as thin plate splines, and several variations of these schemes. The results include an analysis of cost versus skill; this information is summarized in plots for most combinations. The degradation in performance due to inexact parameter specification in statistical observation-to-grid interpolation schemes is addressed. The efficacy of the mean squared error estimates in this situation is also explored.

The purpose of this investigation was to test the relative importance of various aspects of correcting predicted values on a grid by incorporating information from observed values at scattered data points. Grid and observation configurations were patterned after those routincly available over North America. Although investigations were limited to the univariate objective analysis methods, I believe the results are indicative of those that would be achieved in the more general case.

Previous investigations on the error contribution of various steps in the objective analysis process are limited. Koehler (1979) separately studied the errors of a number of grid-toobservation and observation-to-grid interpolation (approximation) routines. He noted that although little attention is typically paid to the grid-to-observation interpolation process significant exrors may be caused by this phase of objective analysis. while this may be a surprise since these errors are usually small compared to the first-guess orrors at the grid points, my results further demonstrated that the contribution to overall error made by the grid-to-observation interpolation process should not be ignored. This investigation complements recent work by Seaman (1933) regarding the accuracy of statistical and surcossive correction schemes. His work provides expected mean squarod error estimates for these. schemes. His work is very thorouglr in that it provides estimates of the analysis error as the parameters of the first-guess error are varied while holding the assumed values constant, and vice-versa.

In section 2. I derive a generalized expression for tho overall error in objective analysis which leads to several observations. In Section 3 I describe the simulation method and the various options which can be easily handled. In section 4 I present the results of the simulations and discuss their implications with regard to the observations made in section 2 .
2.6 The Form of the Error Term in Objective Analysis

My setting for study of the objective analysis process assumes the following:
(i) The true field (function) to be analyzed is H.
(ii) H is known imperfectly at grid points through a "firstguess" which is in error by an amount to be denoted by 9 . The error is a normally distributed stationary random function which has a certain spatial corrolation and standard deviation.
(iii) H is imperfectly measured at observation points yielding values with errors o. These errors are independent and normally distributed with certain standard deviation.

The nature of the errors makes it only possible to avaluate g at grid points, and o at observation points, although it is sometimes convenient to think of them as functions rather than as sets of errors. The objective analysis process consists of interpolation of the first-guess values from the gric to the observation points (by a linear operator designated M) followed by interpolation of the difference between the observed and firstguess values back to the grid point (by a linear operator designated L) as a correction to the first-guess values. Denote the error in the entire process by E, then the final approximation is

```
H}+E=H+g+L(H+O-M(H+g))
```

Let $m(H)$ represent the error in the approximation of H_{a} by $\mathrm{m}(1)$, then $M(H)=H-m(H)$. Rearranging and simplifying the above, leads to

$$
\begin{aligned}
E & =g+L(H+o-M(H)-M(g)) \\
& =g+L(H+o-H+m(H)-M(g)) \\
& =g+L(o+m(H))-L M(g),
\end{aligned}
$$

and finally,

$$
\begin{equation*}
E=L(0)+L m(H)+(g-L M(g)) . \tag{1}
\end{equation*}
$$

Thus the error is made up of three parts. The term $\mathrm{L}(0) \mathrm{i} s$ dependent on the 'function' o, which describes instrumentation error and is typically not controlable. It is obviously advantageous to have o small. Since the values of o are assumet independent and random it is desirable for L to be a smoothing operator. The second part, Lm(H) is within our control and the grid-to-observation point interpolations error should be made small. If it is, then interpolation of the error back to the grid points by L is also small, assuming this smoothing operator is typical and does not magnify the error. The third part (g LM(g)) is the error in interpolation of the first-guess error at the grid points to the observation locations by M, then back to the grid points by L. while it is possible that a certain symbiosis betwaen parts could occur, the goal is cortain]y for aaci interpolation process to have small errors. Ideally the operator L should be a left inverse of the operator m, although this is almost certainly impossible.

Partitioning the error in this way shows, for example, that
using a better interpolation process from the grid to the observation points should decrease the overall analysis error. In certain realizations, of course, the errors may tend to cance]. Since the three terms represent uncorrelated errors, the total error variance over many realizations will tend to be the sam of the individual variances. Thus, decreasing any one will lead to statistically smaller error variances.
3.6 The Computer Simulation Methods

In order to simulate the beh $\begin{aligned} & \\ & \text { ior } \text { of the overrall error under }\end{aligned}$ various interpolation processes and first-guess error assumptions, a modular computer program was written to give soveral options for the different processes. This made it possible to test a large number of combinations of methors an assumptions.

In general terms, the process simulated consists of the following steps:
(i) An underlying mathematically defined function describing the field to be analyzed is evaluated on a grid of points.
(ii) "First-guess" error is generated Erom normal random deviates with a pre-specified standard deviation and spatial correlation.
(iii) "Observed values" are generated by cvaluating the
field to be analyzed at the observation points, and adding normally distributed uncorrelated random leviates to these values.
(iv) The first-quess valuss at the observation points are obtained by one of several interpolation schemes.
(v) Based on the difference between first-guess on obsurved values at the observation locations, "correctec" values at the grid points are obtained. I will refer to the corrected values as the analysis values.

Most of the simulations were done with two different grids and observation point sets. One was based on a 2.5° grid covering $112.5^{\circ} \mathrm{W}$ to $82.5^{\circ} \mathrm{W}$ and $39^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}$, with $117=13 \times 9 \mathrm{gria}$ points and 36 observation points within the grid, as shown in Figure l. The other was based on a 5° grid covering $125^{\circ} \mathrm{W}$ to $75^{\circ} \mathrm{W}$, and $25^{\circ} \mathrm{N}$ to $50^{\circ} \mathrm{N}$, with $38=11 \times 8$ grid points, and 57 observation points within the grid. This grid and the obsorvation locations are shown in Figure 2. All the simulations used were univariate analysis methods on a two-dimonsional field. This simplification was necessary for two reasons. The first reason is that the generation of crror with a sperified spatial correlation required factorization of the correlation matrix into the product of a lower triangular matrix and its transpose. The correlation matrix is of order equal to the number of grid points, and it is not particularly well conditiones. fncorporation of multiple levels, a large grid, or correlated multiple variables was therefore not possible. The other reason is that statistical results required that numerous realizations be simulated, thereby limiting the time available to do the computations.

The underlying mathematically defined ficld can be any specified function. The height field test function used is the on? given by Koehler (1979) and also described in wahba and Wendelberger (1933). The input paramaters, θ_{0} (the location of
the longitudinal wave), $\Delta \theta$, (amount part of the field is skumed logitudinally), and \bar{p} (the pressure for the height field) are easily varied. The experiments simulated the $50 \% \mathrm{mb}$ height. field, using fixed or randomly varying θ_{0} and $\Delta \theta$. A typical field of height contours generated by this function is shown in Figure 3. First-guess errors had a nominal standard deviation, r_{g}, of 30 m . The spatial correlation function was modeled using $\exp \left(\left(-d / c_{d}\right)\right)^{2}$, where d is distance (on the degree grid), and ε_{d} is a correlation distance, specified as 16°. I have used degree measure for distance rather than true distance, to maintain a rectangular grid of first-guess points. This resulted in a distortion of the distance varying with location. The observation errors had a nominal standard deviation, r_{0}, of 10 . m . The observation locations approximately correspond to the North American radiosonde network within the grids being used. 'rhey are shown, along with the grids, in Figures 1 and 2.

The output consisted of mean, root-mean-square, and maximuin errors over each data set (first-guess at grid points, firstguess at observation locations, observation at observation locations, and analysis values at grid points) for each realization. The first and third of these mainly served as a check on the psuedo-random number generator (IMSL subroutines GGNSin and GGNML). The output also gave summaries of the same errors over all realizations as well as the menn and standard deviation of the root-mean-square errors over the realizations. Interpolation processes are sometimes ill-behaved around boundaries. Since in the global problem this can be avoined, tho offects were minimized here by tabulating error only over the interior grid
points. Thus the results are over 77 grid points on th? ?. 5° grid and 54 grid points on the 5° grid. The options simulater for each step are described below.
a. Grid-to-observation point interpolation

First-guess values at the observation points are obtained by interpolation from the first-guess grid values. I compared four schemes. Others could be easily included, however my cesults indicate it will probably not be fruitful to do so. The methods I have used are:
(i) Piecewise bilinear interpolation. As with any piecewise defined method, one must first determine the rectangle in which the evaluation point lies. Then, the evalugtion is most easily seen as translation to the square $[0,1]^{2}$, followed by 3 one dimensional interpolations. This requires operotions, where an operation is defined as a multiplication or division followed by an addition or sub亡raction. Practically, the evaluaー tion can be accomplished in 5 operations (and a couple of extra additions/subtractions). In my cost analysis I have used 3 operations; this cost is very low compared to that of other necessary anlculations.
(ii) Bicubic spline interpolation. I used the [MSL subroutines IBCCCU and IBCEVL. Preprocessing for the spline coefficients on $\exists N_{\theta} x N_{\phi}$ grid requires $12 N_{\theta} x N_{\phi}+27 N_{\phi}+51 N_{\theta}-1$ operations. Evaluation requires 2 operations to translate to $[\Omega, 1]^{2}$ and 5 cubic interpolations at 9 operations each for a total of 17 operations. The preprocessing operations involve solution of tridiagonal systems of equations which atc amenable to vectoriza-
tion for pipeline computers.
(iii) Piecewise bicubic interpolation. My implementation of this scheme used 2 operations for a translation to $10,31^{2}$ followed by 5 cubic interpolations, each costing 5 operntions. In addition, a difference table was formed at a cost of several subtractions.
(iv) Bessel bicubic interpolation. Ny implementation of this scheme used 2 operations for a translation to [0,3] ${ }^{2}$ followed by 5 cubic interpolations, each costing 5 operations. Because of default to parabolic interpolation in boundary regions, there were some additional tests. Thore were also a feiw subtractions to form the difference table.
b. Observation-to-grid point interpolation

As in operational weather foreasting programs, the differences between first-guess and observed values at the observation points are used to correct the first-guess values on the grid to obtain analysis values an the grid. I have tested twelve schemes for performing this correction. I will give a brief description of each method and refer the reader elsowhere for complete details. The first-guess error at the observation location, $P_{k}=$ $\left(\theta_{k}, \phi_{k}\right)$, is denoted by $\Delta H_{k}, k=1, \ldots, N_{o}$. 'the number of gric? points is $N_{\Theta} N_{\phi}$. I want to evaluate the approximation at grid points, but will write it in terms of a generic point, $P=(\vartheta, \phi)$. Recall that the standard deviation of the first-guess errors is r^{g}, and the spatial covariance function is denoted by $\mathbb{C}(\mathrm{P}, 2)$.

An operation count has been made for each of the methods. I discuss briefly how various phases of the process contribute, and
summarize the results in Table l, along with some reprosentatio numbers that arise from my simulations. I have described sone sshemes as local, implying that others are global. In the context of global objective analysis, all the schemes 1 consifer are local; the schemes which are global for my simulation are loss local than the ones I refer to as local.
(i) Optimum interpolation (OI). This scheme was introducnd to the meteorological literature by Gandin (1953) and has received widespread attention in recent years, e.g. see bergman (1979) and Lorenc (1981). The method in its proper form requires that the spatial covariance function of the first-guess errors and the standard deviation of the observation error be known. Since these are known for this simulation, I have used their properties. I have implemented the scheme as described in Eranke and Gordon (1983), viewing the approximation as a linaar combination of the covariance functions associated with the observation points. Thus we have

$$
\Delta H(P)=\sum_{k=1}^{N_{0}} a_{k} C\left(p, p_{k}\right),
$$

where $\mathbb{C}(\mathrm{P}, \Omega)$ is as noted above. The ak are determined from the system of equations

$$
\left(c\left(P_{i}, P_{j}\right)+\delta_{i j} r_{o}^{2}\right)\left(\begin{array}{c}
a_{1} \\
\cdot \\
\cdot \\
a_{N_{0}}
\end{array}\right)=\left(\begin{array}{c}
\Delta H_{l} \\
\vdots \\
\cdot \\
\Delta H_{N_{0}}
\end{array}\right)
$$

where ΔH_{i} is the difference between the first-guess and observed values at the $i^{\text {th }}$ observation point, r_{o} is the standard Aeviation of the observation error, and $\delta_{i j}$ is the kronecker delta. The cost of (OI) consists of a preprocessing phase that
includes the generation and solution of the syster of equations, followed by evaluation of the analysis at the gria points. For N_{0} observations, preprocessing is at a cost of $N_{0}\left(N_{0}+1\right) / 2$ function evaluations to generate the coefficient matrix and $\left(N_{0}^{3}+6 N_{0}^{2}-\right.$ $\left.N_{o}\right) / 6$ operations plus N_{o} square roots to perform Cholesky deco:nposition and solution of the system of equations for the ${ }^{a} k$. Evaluation costs N_{0} covariance function evaluations and N_{0} operations to form the linear combination representing the value of the correction at each grid point.
(ii) Local optimum interpolation. In my version of this scheme, nominally only points within the surrounding 10° square are used; if fewer than 4 observations are available, the square is expanded to 15° and so on, by 2.5° increments in each direction until at least 4 observations are availabl:. The costs of the search were not assessed. For each grid value correction, a system of equations must be formed and solved, and the corresponding correction computed. With n observations being used the expressions given for OI above apply with n replacing V_{0}. This process was performed for each grid point, making the total cost the sum of these costs over all grid points.
(iii) Global Barnes' method. This type of scheme is described by Barnes (1973) and others. My scheme used the known correlation functions as the weights for the first pass. Thus, the approximation is

$$
\Delta H \cdot, I(P)=\sum_{k=1}^{N_{0}} W_{k}(P) \Delta H_{k} / \sum_{k=1}^{N_{0}} W_{k}(P),
$$

where $w_{k}=\exp \left(\left(-\left(| | P-P_{k} \| / C_{d}\right)^{2}\right)\right.$, and ΔH_{k} is as before. For the
second pass the correction has the same form, but ΔH_{k} is replazed by $\Delta H_{k, 1}$, the difference between the corrected first-guess and the observations. The quantity c_{d} is replaced by $c_{d} / 3^{1 / 2}$ for the second pass. The total correction at the grid points is then the sum of the two corrections. For each grid point the cost of this method is N_{0} weight function evaluations per pass and $N_{0}+1$ operations per pass. In addition a separate interpolation from the grid points to the observation points is required before the second pass. This type of scheme has been defined and studied in a different context, without a change of weight functions between iterations, by Foley and Nielson (1939).
(iv) Local Barnes' method. The same localization process as used for the local OI scheme (ii) was used here. As for the global version, two passes were used. Hence the cost for an evaluation at a grid point with n neighboring points is the same expression as in the global scheme, but with n replacing N_{0}. In addition, there was the search cost to determine the nearby observations, which was not assessed. Costs of an interpolation from the grid points to the observation points between passes was included.
(v) Statistical interpolation ($c_{d}=14^{\circ}$). In practical applications of $O I$ the error correlations and standard deviations cannot be modeled precisely. This has lead to the use of the name "statistical interpolation". Computationally the method is identical to the OI scheme (i). Here the only difference is the substitution of an inexact correlation distance, $c_{d}=14$. The algorithm and costs are identical.
(vi) Statistical interpolation $\left(c_{d}=7^{\circ}\right)$. Again this is
identical to (i) except that the inexact value substituter for C_{0} is 7.
(vii) Statistical interpolation (damped cosine corrolation Eunction). Once more this scheme is computationally identical to (i) except that the correlation function used is of the form $\exp \left(\left(-\left(||P-Q|| / c_{d}\right)^{2}\right) \cos \left(\left(||P-Q|| / c_{d}\right)(/ 2)\right)\right.$. I used the value c_{d} $=1 \%$.
(viii) Thin plate splines. This method is Aescribed by Wahba and Wendlelberger (1989) and others. The approximating function used by the scheme is

$$
H(P)=\sum_{k=1}^{N_{0}} A_{k} B\left(P, P_{k}\right)+a \theta+b \phi+c,
$$

where the basis function $B(P, Q)=\left\|P-Q\left|\left\|^{2} \log \right\| P-O\right| \mid\right.$. The A_{k} and a, b, and c, are obtained by solving the system of equations
N_{0}

$$
\begin{aligned}
& \sum_{j=1}^{0} A_{k}\left(B\left(P_{i}, P_{j}\right)+\lambda N_{k} r_{o}^{2} i j\right)+a \theta_{i}+h \phi_{i}+c=\Delta_{i 1}, i=1, \ldots, N_{0} \\
& V_{0} \\
& \sum_{j=1} A_{j} \theta_{j}=\emptyset \\
& N_{0} \\
& \sum A_{j} \phi_{j}=0 \\
& j=1 \\
& N_{0} \\
& \sum A_{j}=0 . \\
& j=1
\end{aligned}
$$

In the above, λ is a smoothing parameter. The smoothing parameter was chosen on the basis of a few trials with no attempt to optimize its choice for a particular data set, as can be done. Wendelberger (1931) describes a program that will automatically choose λ (and in as well, see next method), but I have not testeci
it yet. This system of equations is symmetrio, but not jositive definite. I have used standard L-U decomposition routines to solve the system. Methods for symmetric indelinite systems uso about half as many operations, however I observed greater numerical stability using the general decomposition prosess. 'lhere are $N_{0}\left(N_{0}+1\right) / 2$ basis function evaluations, and solution of the system of equations requires $\left(N_{0}+3\right)\left(N_{0}^{2}+5 N_{0}+3\right) / 3+\left(N_{0}+3\right)^{2}$ operations. Unlike symmetric positive definite systems, solution of these equations requires searching for a pivot and pivoting. Evaluation at each grid point then requires N_{o} basis function evaluations and $\mathrm{N}_{\mathrm{O}}+2$ operations to form the sum.
(ix) Laplacian smoothing spline ($m=3$). This scheme is also described by Wahbo and Nendelbergar (198\%), and is one of those available in the program by Wendelberger (198l). The thin plate spline method is a member of this family (with m=2), but also has the "thin plate" interpretation. The reason for inclusion of this method is that the results of wanhand wandelberger inficate that pressure height fields are better approximated using values of $m=3$ or 4. I will not describe the method fully. It requires evaluation of $N_{0}\left(N_{0}+1\right) / 2$ basis functions and $3 N_{0}$ multiplications to set up the system of $N_{0}+5$ equations to be solver. Then $N_{o}+5$ operations would be required for evaluation at each gric point, along with tne evaluation of N_{0} basis functions.
(x) Franke/Gordon. This scheme was suggestad by Franke and Gordon (1933) as one which is an explicit schemo, similat to Barnes' method, but which when iterated converges to the OI interpolant. Inree iterations, with the paramoter $=.8511 \mathrm{~m} \mid 1$
(in the notation of that report) were performed. 'rhe cost in operations is $2 N_{0}\left(N_{o}+1\right)$ plus $3 N_{0}$ for each grid point. The number of weight function evaluations is $2 N_{o}^{2}$ plus $3 N_{o}$ for each grid point.
(xi) Pseudo-Barnes' method. This method was described in Franke and Gordon (1983) and was at that tine mistaken for Barnes' method. It differs in that the error at the second iteration is Barnes' approximation evaluated at the observation point minus the first-guess error, rather than the the corrected first-guess at the grid point interpolated to the observation point minus the observed value. The cost of this algorithm is evaluation of N_{0}^{2} weight functions plus $2 N_{o}$ for each grid point. It requires $N_{0}\left(N_{0}+1\right)$ operations, plus $2\left(N_{0}+1\right)$ for each grid point.
(xii) Local pseudo-Barnes' method. This is a local version of (xi), using the same "nearby" observation points as (ii) an? (iv). A grid point with n nearby observation points requires evaluation of $n^{2}+2 n$ basis functions and $n^{2}+3 n+2$ operations.
4.1. Results

The simulation program described in the previous section was run for a substantial number of different options. Each run consisted of 10 realizations of a test field each containing associated first-guess and observation errors. Table 2 gives the assumed parameter values for the various cases. Not all combinations of grid-to-observation point and observation-to-grid point interpolation schemes were used in every case. The tables detail the complete results and the entries indicate which combinations were computed. Each combination in a given table (3-14)
corresponds to the same set of realizations, but different tables depend on different realizations.

This investigation was designed to determine the influence of the grid-to-observation point interpolation scheme. This influence is seen by noting changes in error for a particular observation-to-grid point interpolation scheme as the grid-toobservation point interpolation scheme is varied. The rows of Tables 3-14 give this information. The bicubic spline interpolation produced significant improvement over piecewise bilinear interpolation. This verifies the smaller magnitude of the term Lin(H) in the error expression given by (l) for the spline method. For 2.5° grids the errors were no smaller for spline interpolation than for piecewise bicubic or Bessel bicubic: interpolation. Evidently the grid spacing was small enough (for the test function used) that the interpolation error was not significant. Spline interpolation did show an improvement over piecewise bicubic and Bessel bicubic interpolation on the 50° grid. Spline interpolation and the cubic interpolation methods showed even greater improvement over piecewise linear interpolation on the 5° grid than on the 2.5° grid. Interestingly the first-guess errors at the observation points had greater rms values for cubic interpolation than they did for linear interpolation. This occurs becausc linear interpolation inherontly has greater smoothing.

Most of the useful information given in Tables 3-l4 can be more easily obtained from plots of the salient values. Figures 4-8 give plots of skill vs. cost of the algorithm in thousands of
operations per analysis. Here "skill" is defined to be lrmsa/ro, where rmsa is the rmserror in the analysis values. The skill with respect to bilinear and bicubic interpolation are @.äh indicated, connected with a straight line to delineate the extent between the two. The results for only one of the statistical schemes, (vi), has been plotted since the others were nearly identical. For these purposes I counted an evalurtion of a basis, weight, square root, or covariance function as 10 operations. The plots reveal that the statistical schemes, local DI, and thin plate splines all had close to the same accuracy and all were slightly less accurate than OI. The Barnes' schemes, the Franke/Gordon scheme, and Laplacian smoothing splines were least accurate. The poor performance of the Laplacian sluoothing splines here, in contrast to the better performance obtained by Wahba and wendelberger (1980) is probably due to the scheme being applied to the first-guess error function rather than to the underlying true height field. The degradation in the performance of the less than optimal statistical schemes is perhaps less drastic than one might expect. It does appear that it was better to underestimate the correlation distance than to overestimate it.

Figure 9 shows plots of the rmserrors in the analysis values as a function of first-guess errors. The improvement in the Barnes' scheme as the first-guess errors decrease was rapid. The scheme gave results nearly as good as OI, the statistical schemes, and thin plate splines. This occurred because the principal problem became smoothing observation errors as the first-guess errors tended to zero. Figure le shows plots of the
rms errors in the analysis values as a function of observation errors. As observation errors go to zero the importance of modelling the Eirst-guess error wis more important than smoothing. Thus OI, the statistical schernes, and thin plate splines improved the most, while both Barnes' sohemss improver? little. Figures $11-13$ show the rms errors in the analysis values when incorrect variances were specified for tho interpolation routines. Methods not using thesc values were naturally unaffected so that changes in the rmserrors in theanalysis viluas for these methods only reflect the variability of the (different) realizations used in the various cases. Mhe plots show that. the use of incorrect values for the first-guess and observation error variances did not drastically affect the accuracy of the statistical methods. The interested reader is referred to Seaman (1.983) for more extensive tests of the effects of incorrcot parameter specification on the performance of statistical interpolation methocts.

One of the attractive features of the statistical selmmes is that they afford a calculation for the estimated mean squared error. These estimates do not depend on any particular rearization, so they were not incorporated into tho process. However, I did compute them as a side calculation for my grids anct ohservetion points. The results of these calculations are tabulated for the 2.5° grid, along with the empiricnl rims errors obtainer? during the simulations. Table 15 shows that the estimates given by OI were quite good; the estimated anct empirical errors varies only a few percent. 'I'hey also were accurate for local OI, as
they should be. On the other hand, the slight degradation in performance of statistical methods when incorrect correlations or variances were specified did not carry over to the error estimates. In fact the schemes that have their performance degraded the most (in this case, using too long a correlation distance) showed a decrease in the estimated error variance. Conversely, shortening the correlation distance in the statistical methor increased the error estimate as well as the empirical error obtained, although the empirical error is underestimated. This indicates that one must not put too much faith in the er ror estimates when the actual covariance structure is not known, as in practice. It appears one could obtain just about any error estimate wished simply by specifying unrealistic parameters for the covariance structure.

The principal results of this study were as follows. The decomposition of the error into independent components in (1) identified possible ways to decrease the analysis error. This lead to the results showing the contribution of the grid-toobservation interpolation process, the necessity of smoothing in the observation-to-grid interpolation process, along with accuracy. The simulations provided confirmation of the above and yielded information concerning the sensitivity of statistical interpolation schemes to inexact parameter specification. The error estimates provided by statistical schemes were shown to be sensitive to inexact parameter specification.
5.6 Acknowlegdements

I would like to acknowledge useful discussions that I hac with Dr. Edward Barker. In addition, his helpful comments on preliminary drafts of the the paper were responsible for many improvements in content and form.

References

Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations, NOAA Tech. Memo. ERL NSSL-62 (NTIS No. COM-73-10781)

Bergman, Kennoth H., l979: Multivariate analysis of temperatures and winds using optimum interpolation, Mon. Wea. Rev. lll, 1423-1444

Foley, Thomas A., and Gregory M. Nielson, 1936: Multivarinte interpolation to scattered data using delta iteration, in Approximation 'rheory III (E. W. Chency, ed.), Academic Press, New York, pp. 419-424

Franke, Richard, and William J. Gordon, l983: The structure of optimum interpolation functions, Tech. Rep. No. NPS-53-0095, Naval Postgraduate School, Monterey, 23 pp. (NTIS vo. ADAl26 958/8)

Gandin, L. S., l953: Objective analysis of meteorologica? fields [Translated from Russian by the Israeli Program for Scientific Translations, 1955], 242 pp.

Koehler, Thomas Lee, 1979: A case study of height and temperature analysis derivod from Nimbus-5 satellite soundings on a fine mesh model grid, Ph.D. Thesis, Dept. of Meteorology, University of wisconsin, Madison, 1979, 135 Pp .

Seaman, R. S., 1983: Objective analysis accuracies of statistical interpolation and successive correction schemos, Aust. Met. Mag. 31, 225-246

Wahba, Grace, 1932: Variational methods in simultaneous optimum interpolation and initialization, in The Interaction Between Objective Analysis and Initialization (Proceedings of the Fourteenth Stanstead Seminar held at Bishop's University, Lennoxville, Quebec, Canada), D. Williamson, ed., Publication in Met. 127, McGill University, Montreal, pp. 173-135

Wahba, Grace, and James Wendelberger, l98\%: Some new mathematical methods for variational objective analysis using splines and cross validation, Mon. Wea. Rev. lof, 1122-1143

Wendelberger, James; 1982: The computation of Laplacian smoothing splines with examples, Dept. of Statistics, rech. Rep. No. 548 , University of Wisconsin, Marison, 35 pp .

motios?	1: \#operations	2: \#Basis	3: Other	Example i ($1,2,3$) 2.5° grid, 35 obs 5° grid, 57 abs
Opt Interp	$\begin{aligned} & \left(N_{0}^{3}+\pi N_{0}^{2}-N_{0}\right) / 6 \\ & +N_{0} N_{\theta} N_{\phi} \end{aligned}$	$N_{0}\left(N_{0}+1\right) / 2+N_{0} N_{\theta} N_{\phi}$	No sqrts	$\begin{array}{ll} 13278, & 4878, \\ 50501, & 35 \\ 5174, & 67 \end{array}$
Local OI	$\sum\left(\left(n^{3}+5 n^{2}-n\right) / 5+n\right)$	$\sum(n(n+1) / 2+n)$	search, $\sum \mathrm{n}$ sqres	$\begin{array}{r} 9555,3155,583 \\ 7333,2490,515 \end{array}$
Barnes'	$2 N_{\theta} N_{\phi}\left(N_{0}+1\right)$	$2 N_{O} N_{\theta} N_{\phi}$	grid-to-obs	$\begin{array}{r} 8558,8424,972 \\ 11958,11792,1899 \end{array}$
$\begin{aligned} & \text { Local } \\ & \text { Barnes' } \end{aligned}$	$\sum(2 n+2)$	$\sum 2 \mathrm{n}$	$\begin{aligned} & \text { search, } \\ & \text { grid-to-obs } \end{aligned}$	$\begin{array}{ll} 1500, & 1355,972 \\ 1208, & 1532,1899 \end{array}$
Thin Pl Spl	$\begin{aligned} & \left(N_{0}+3\right)\left(\left(N_{0}+3\right)^{2}-1\right) / 3 \\ & +\left(N_{0}+3\right)^{2}+\left(N_{0}+2\right) N_{\theta} N_{0} \end{aligned}$	$N_{0}\left(N_{0}+1\right) / 2+N_{0} N_{\theta} N_{\phi}$	--	$\begin{array}{r} 25725,4878,- \\ 125231,8174,- \end{array}$
Lapl. Sm Spl	$\begin{aligned} & \left(N_{0}+5\right)\left(\left(N_{0}+5\right)^{2}-1\right) / 2 \\ & +\left(N_{0}+5\right)^{2}+\left(N_{0}+5\right) N_{\theta} N_{0} \end{aligned}$	$N_{0}\left(N_{0}+1\right) / 2+N_{0} N_{\theta^{\prime}} N_{\phi}$	--	$\begin{array}{r} 31585, ~ 4879,- \\ 141599,8174,- \end{array}$
Frnke/Ördn	$3 N^{\prime} N_{\phi}\left(N_{0}+1\right)+2 N_{0}\left(N_{0}+1\right)$	$3 V_{0} N_{\theta} N_{\phi}$	--	$\begin{aligned} & 15551, ~ 1523,8,- \\ & 27964, ~ 26655,- \end{aligned}$
$\begin{aligned} & \text { Pseucio- } \\ & \text { Brarnes } \end{aligned}$	$2 N^{2} \mathrm{~A}^{\text {N }}$ ($\left.N_{0}+1\right)+\mathrm{N}_{0}\left(N_{0}+1\right)$	${ }^{2} N_{0} N_{\theta} N_{\phi}$	--	$\begin{array}{r} 9090, \quad 9720, \\ 16521, \quad 15221, \end{array}$
Local P13.arnこs'	$\sum\left(n^{2}+3 n+2\right)$	$\sum\left(n^{2}+2 n\right)$	search	$\begin{array}{lll} 5 s_{1} 19, & 5549, & - \\ r 96, & \therefore 91, & \end{array}$

Table \#	${ }^{\text {r }}$ g	ro	${ }^{\circ}$	θ	grid	notes ${ }^{\text {c }}$
3	30	10	$10{ }_{6}$	\emptyset	$13 \times 9.2 .5^{0}$	
4	33	10	100	13.775	$13 \times 9.2 .5^{0}$	
5	20	10	100	\emptyset	$13 \times 9.2 .5^{\circ}$	
6	30	5	100	0	$13 \times 7.2 .5^{\circ}$	
7	30	$1 \emptyset$	random ${ }^{\text {a }}$	randomb	$13 \times 9,2.5^{\circ}$	
8	3!	10	random ${ }^{\text {a }}$	random ${ }^{\text {b }}$	$13 \times 9.2 .5^{0}$	$\left(r_{0}\right)_{i}=30$
9	20	10	random ${ }^{\text {a }}$	randomb	13×9,2.50	$\left(r_{g}\right)_{\mathrm{i}}=2 \pi$
10	30	10	randoma	randomb	$13 \times 9.2 .5^{\circ}$	$\left(r_{0}\right)_{i}=5$
11	30	5	randorn ${ }^{\text {a }}$	random ${ }^{\text {b }}$	$13 \times 9.2 .5^{\circ}$	$\left(r_{0}\right)_{i}=1 r^{\prime}$
12	5	10	random ${ }^{\text {a }}$	random ${ }^{\text {b }}$	$13 \times 9.2 .5^{0}$	
13	30	\square	random ${ }^{\text {a }}$	random ${ }^{\text {b }}$	$13 \times 3.2 .5^{\circ}$	
14	30	10	random ${ }^{\text {a }}$	randon ${ }^{\text {b }}$	$11 \times 8.5^{\circ}$	

Table 2
a $\quad \theta_{0}$ uniformly distributed in ($-82.5^{\circ}, 112.5^{\circ}$)
b $\quad \Delta \theta$ uniformly distributed in $\left(-15^{\circ}, 15^{\circ}\right)$
c The statistical interpolation routines were given incorrect variances, as indicated

```
E=500. Theta= 100, [\epsilonIth = 0
Ig = 30, IO = 10
```

Number cf IE alizations $=100$
13×9 grid of 2.5 degrees, 36 observation points

Grid-to-cbs:	FW Iinear	Bicub Spl	PW Bicub	Bsl Bicub
Obs-to-grid				
opt InteIf	6.64	6.09	6.09	6.09
($C d=10$)	6.53(1.18)	5.97 (1.20)	5.98 (1.19)	5.98(1.19)
Local OI	7.09	6.53	6.54	6.55
($C d=10$)	6.99(1.19)	6.42 (1.19)	6.44 (1.19)	6.44(1.18)
Barnes ${ }^{\text {a }}$	9.27	8.87	8.87	8.88
2-Pass	9.08 (1.03)	8.68(1.82)	8.68(1.82)	8.69(1.82)
Barnes ${ }^{\prime}$	8.42	7.95	7.96	7.96
(Lecal)	8.27(1.57)	$7.79(1.56)$	7.80 (1.56)	$7.81(1.56)$
Stat Interp	7.28	6.78	6.79	6.79
$(C d=14)$	7.23(1.22)	6.66 (1.27)	6.67 (1.26)	6.68 (1.26)
Stat Interf	7.34	6.87	6.87	6.87
(cd = 7)	7.23(1.25)	6.75 (1.26)	6.76 (1.25)	6.76 (1.25)
Stat Interp	7.37	6.91	6.91	6.91
(Dmpd Cos)	7.26 (1.28)	$6.79(1.28)$	6.79 (1.28)	6.79 (1.28)
Thin Pl SEl	7.12	6.59	6.60	6.65
($\mathrm{m}=2$)	7.00 (1.30)	6.45 (1.33)	6.46 (1.32)	6.47 (1.32)
Lapl Sm Spl	10.54	10.25	10.25	10.25
(m = 3)	10.40(1.73)	10.10(1.73)	10.10(1.73)	10.11(1.73)
Frnke/Grdn	12.02	11.75	11.76	11.76
(3 Fass)	11.72(2.65)	11.45 (2.65)	11.45 (2.65)	11.45(2.65)
Pseudobarnes'	9.28	8.87	8.87	8.88
(2 Fass)	9.10 (1.83)	8.68(1.82)	8.68 (1.82)	8.69(1.82)
Pseudobarnes'	8.20	7.70	7.71	7.72
(Local)	$8.06(1.51)$	$7.55(1.50)$	7.57 (1.50)	7.57(1.20)

TABLE 3

$\begin{aligned} & \mathrm{F}=500 \text { Th } \\ & \mathrm{Ig}=3 \mathrm{CO} \mathrm{IO} \\ & \text { Number of r } \\ & 13 \times 9 \mathrm{grid} \mathrm{o} \end{aligned}$	$\begin{aligned} & \text { eta }=100 . \\ & =10 \\ & \text { eclizations } \\ & \text { f } 2.5 \text { degre } \end{aligned}$	$\begin{aligned} & h=13.775 \\ & 00 \\ & 36 \text { observat } \end{aligned}$	Entries: points	RMSE $M \in a n$	$\begin{aligned} & \text { Aralysis } \\ & \text { RMSE }(S t D \in v) \end{aligned}$
Grid-to-obs:	EW Linear	Bicub Spl	PW Bicub		B $\leqslant 1$ Bicub
Obs-to-grid					
$\begin{aligned} & \text { Opt InteIf } \\ & (C d=10) \end{aligned}$	$\begin{aligned} & 6.88 \\ & 6.72(1.49) \end{aligned}$	$\begin{aligned} & 6.19 \\ & 6.05(1.34) \end{aligned}$	$\begin{aligned} & 6.20 \\ & 6.06(1.34) \end{aligned}$		$\begin{aligned} & 6.21 \\ & 6.06(1.34) \end{aligned}$
$\begin{aligned} & \text { Lccal OI } \\ & (\mathrm{Cd}=10) \end{aligned}$	$\begin{aligned} & 7.40 \\ & 7.24(1.51) \end{aligned}$	$\begin{aligned} & 6.76 \\ & 6.62(1.37) \end{aligned}$	$\begin{aligned} & 6.77 \\ & 6.63(1.37) \end{aligned}$		
Barnes'	9.73	9.28	9.29		
2-Eass	9.53 (1.96)	$9.09(1.88)$	9.10 (1.88)		
Earnes'	8.29	7.79	7.77		
(Lecal)	8.16(1.48)	7.67 (1.36)	7.66 (1.36)		
Stat Interf	7.71	7.08	7.09		
$(C d=14)$	7.56 (1.50)	6.95 (1.35)	6.96 (1.35)		
Stat Interf (cd = 7)	$\begin{aligned} & 7.54 \\ & 7.39(1.50) \end{aligned}$	6.96	6.96		
Stat Interf	7.37	6.91	6.91		6.91
(Dapd Ccs)	7.26 (1.28)	6.79 (1.28)	6.79 (1.28)		6.79 (1.28)
Thin Pl Spl	7.45	6.80	6.81		
(m = 2)	7.29 (1.51)	6.66 (1.37)	6.67 (1.37)		
Lafl sm spl$(m=3)$					
Frnke/Grdn (3 Fass)					
Pseudobarnes'	9.75	9.28			
(2 Fass)	9.55(1.97)	$9.09(1.88)$			
Pseudobarnes' (Lccal)					

[^0]```
F= 500, Theta = 100, Eelth = 0
```

$I g=20$. $I O=10$

Entries: RMSE Arelyṡs
Meán FMSE (StDev)

Number of realizations $=100$
13 X 9 grid of 2.5 degrees, 36 Observation points

| Grid-to-cts: | FW Linear | Bicub Spl | PW Bicub | $B \leq 1$ Bicub |
| :---: | :---: | :---: | :---: | :---: |
| obs-to-grid |  |  |  |  |
| $\begin{aligned} & \text { Opt Interp } \\ & (\mathrm{Cd}=10) \end{aligned}$ | 6.23 | 5.75 | 5.76 |  |
|  | 6.10 (1.28) | 5.62 (1.22) | 5.63 (1.22) |  |
| $\begin{aligned} & \text { Local } 0 I \\ & (C d=10) \end{aligned}$ | 6.54 | 6.10 | 6.10 |  |
|  | 6.41 (1.28) | 5.97 (1.22) | $5.98(1.22)$ |  |
| Earnes' 2-Pass | 7.18 | 6.85 | 6.86 |  |
|  | 7.03 (1.47) | 6.71 (1.47) | 6.71 (1.41) |  |
| Barnes' <br> (Lccal) | 7.19 | 6.77 | 6.76 |  |
|  | 7.08 (1.22) | $6.68(1.11)$ | 6.67 (1.10) |  |
| Stat Interp$(C d=14)$ | 6.70 | 6.30 | 6.31 |  |
|  | 6.58(1.27) | 6.19 (1.19) | 6.19 (1.19) |  |
| Stat Interf$(C d=7)$ | 6.71 | 6.24 | 6.25 |  |
|  | 6.58 (1.30) | 6.12 (1.25) | 6.12 (1.24) |  |
| Stat Interf <br> (Dmpd Cos) | 6.78 | 6.31 | 6.32 |  |
|  | 6.65 (1.33) | 6.18 (1.28) | 6.18 (1.28) |  |
| $\begin{aligned} & \text { Thir Pl SEl } \\ & (\mathrm{m}=2) \end{aligned}$ | 6.66 | 6.20 | 6.20 |  |
|  | 6.52 (1.34) | 6.06 (1.29) | 6.07 (1.29) |  |
| $\begin{aligned} & \text { LaEl Sm SEl } \\ & (m=3) \end{aligned}$ | 11.05 | 10.71 | 10.71 |  |
|  | 10.84(2.16) | 10.50 (2.12) | $10.50(2.12)$ |  |
| Frnke/Gràn (3 Pass) | $\varepsilon .72$ | 8.56 | 8.56 |  |
|  | 8.54 (1.78) | $8.39(1.70)$ | 8.39 (1.70) |  |
| Pseudo Barnes' (2 Fass) | 7.19 | 6.85 | 6.86 |  |
|  | 7.03 (1.47) | 6.85 (1.41) | 6.71 (1.41) |  |
| Pseudobarnes' (Local) | 6.78 | 6.37 | 6.38 |  |
|  | 6.66(1.28) | 6.25 (1.24) | 6.26 (1.23) |  |

TABLE 5

```
\(\mathrm{E}=\) 500, Theta \(=\) 100, Delth \(=0\)
Ig \(=3 \mathrm{C}\). \(\mathrm{IO}=5\)
```

Entries: RMSE Analysis
Mean RMSE(StDev)

Number of realizations $=100$
$13 \times 9$ grid of 2.5 degrees, 36 Observation points

| Grid-to-cks: | FW Linear | Bicut Spl | PW Bicub | Bsl Bicub |
| :---: | :---: | :---: | :---: | :---: |
| Obs-to-gIid |  |  |  |  |
| opt Interp | 4.57 | 3.76 | 3.77 |  |
| $(\mathrm{Cd}=10)$ | 4.50 (0.83) | 3.70 (0.69) | 3.70 (0.69) |  |
| Local OI | 5.03 | 4.26 | 4.27 |  |
| $(C d=10)$ | 4.95 (0.91) | 4.19 (0.77) | 4.20 (0.77) |  |
| Barnes' | 8.88 | 8.48 | 8.49 |  |
| 2-Fass | 8.69 (1.85) | 8.29 (1.76) | 8.30 (1.77) |  |
| Earnes' | 6.39 | 5.90 | 5.89 |  |
| (Lccal) | 6.30 (1.10) | 5.79 (1.11) | $5.78(1.11)$ |  |
| Stat Interp | 5.26 | 4.57 | 4.57 |  |
| $(C d=14)$ | 5.17 (0.92) | $4.49(0.83)$ | $4.50(0.83)$ |  |
|  | $5.02$ | $4.28$ | $4.28$ |  |
| $(C d=7)$ | $4.95(0.82)$ | $4.21(0.74)$ | $4.21(0.74)$ |  |
| Stat Interf | 4.96 | 4.22 | 4.22 |  |
| (Dmpd Cos) | 4.89 (0.83) | 4.16 (0.75) | 4.16 (0.75) |  |
| Thin Pl SEl | 4.92 | 4.15 | 4.16 |  |
| $(\mathrm{m}=2)$ | 4.85 (0.84) | $4.09(0.72)$ | 4.10 (0.72) |  |
| Lafl Sm Spl | 6.08 | 5.43 | 5.43 |  |
| $(m=3)$ | 5.98 (1.05) | $5.33(1.06)$ | $5.33(1.06)$ |  |
| Frike/Grdn | 11.82 | 11.61 | 11.61 |  |
| (3 Pass) | 11.55 (2.55) | 11.34 (2.51) | 11.34 (2.50) |  |
| PstudoEarnes' | 8.89 | 8.48 | 8.49 |  |
| (2 Pass) | 8.70 (1.85) | 8.29(1.76) | 8.30 (1.77) |  |
| Pseudobarnes' | 7.30 | 6.75 | 6.76 |  |
| (Local) | 7.15 (1.47) | $6.60(1.40)$ | $6.62(1.41)$ |  |

TABLE 6
$\mathrm{F}=500$. Theta $=$ RANDCM, Delth $=$ RANDOM, Encries: RMSE Analysis
$r g=30$. $\mathrm{IO}=10$
MEan RMSE (S+DEv)
Number cf realizations $=100$
$13 \times 9$ grid of 2.5 degreєs, 36 Observation points

| Grid-to-cbs: | FW Linear | Bicub Spl | PW Bicub | $B \leq 1$ Bicub |
| :---: | :---: | :---: | :---: | :---: |
| Obs-to-grid |  |  |  |  |
| $\begin{aligned} & \text { Opt Int } \in I p \\ & \text { (Cd }=10) \end{aligned}$ | $\begin{aligned} & 7.00 \\ & 6.85(1.44) \end{aligned}$ |  | $\begin{aligned} & 6.40 \\ & 6.27(1.30) \end{aligned}$ |  |
| $\begin{aligned} & \text { Local OI } \\ & (\mathrm{Cd}=10) \end{aligned}$ | $\begin{aligned} & 7.48 \\ & 7.33(1.49) \end{aligned}$ |  | $\begin{aligned} & 6.90 \\ & 6.90(1.36) \end{aligned}$ |  |
| $\begin{aligned} & \text { Barnes' } \\ & 2-\text { Eass } \end{aligned}$ | $\begin{aligned} & 9.92 \\ & 9.70(2.07) \end{aligned}$ |  | $\begin{aligned} & 9.52 \\ & 9.33(1.89) \end{aligned}$ |  |
| Barnes' <br> (Lccal) | $\begin{aligned} & 8.34 \\ & 8.21(1.46) \end{aligned}$ |  | $\begin{aligned} & 7.89 \\ & 7.76(1.39) \end{aligned}$ |  |
| Stat InteIf $(\mathrm{Cd}=14)$ | $\begin{aligned} & 7.92 \\ & 7.77(1.56) \end{aligned}$ |  | $\begin{aligned} & 7.41 \\ & 7.27(1.43) \end{aligned}$ |  |
| Stat Interp $(\mathrm{cd}=7)$ | $\begin{aligned} & 7.56 \\ & 7.41(1.51) \end{aligned}$ |  | $\begin{aligned} & 7.01 \\ & 6.88(1.36) \end{aligned}$ |  |
| Stat Interp <br> (Dafd Ccs) | $\begin{aligned} & 7.58 \\ & 7.43(1.53) \end{aligned}$ |  | $\begin{aligned} & 7.04 \\ & 6.90(1.38) \end{aligned}$ |  |
| $\begin{aligned} & \text { Thin Pl SFl } \\ & (\mathrm{m}=2) \end{aligned}$ | $\begin{aligned} & 7.63 \\ & 7.47(1.58) \end{aligned}$ |  | $\begin{aligned} & 7.06 \\ & 6.92(1.42) \end{aligned}$ |  |
| $\begin{aligned} & \text { Lapl Sm } 5 p l \\ & (m=3) \end{aligned}$ |  |  |  |  |

Frnke/Grdn
(3 Fass)
PseudoBaInes' (2 Fass)

PseudoBarnes'
(Lccal)

TABLE 7

```
 E = 500, Theta = RANDCM, Delth = RANDOM, Entries: RMSE Analysis
 Ig = 30. IC = 10, rg(lie) = 20 Mean RMSE(StDev)
 Number of realizations=100
 13x9 grid of 2.5 degrees, 36 Observation points
Grid-to-cbs: EW Linear Bicub Spl PW Bicub Bsl Bicub
Obs-to-grid
\begin{tabular}{lll}
Opt In \(\in I p\) & 7.14 & 6.47 \\
\((C d=10)\) & \(6.97(1.52)\) & \(6.32(1.35)\)
\end{tabular}
```

| Local OI | 7.56 |
| :--- | :--- |
| $(C d=10)$ | $7.39(1.62$ |

6.92
$6.77(1.41)$
Barnes'
9.64
9.21

2-Fass
9.42(2.04)
9.01 (1.9C)

Barnes'
8.30
(Lecal)
7.04(1.43)
7.73
$7.62(1.33)$

```
Stat Interp
(Cd = 14)
Stat InteIp
(Cd = 7)
Stat Int \(\in \mathrm{Ip}\)
(Dafd Ccs)
```

Thin Pl sfl
7.19
6.52
$(\mathrm{m}=2) \quad 7.04(1.45)$
$6.39(1.26)$
Lapl Sm Spl
(m = 3)

```
Frnke/Grdn
(3 Fass)
Pseudobarnes'
(2 Fass)
Pseudobarnes'
(Lccal)
```

```
 F = 500, Theta = RANDCM, Delth = RANDOM, Entries: RMSE Analysis
 Ig = 2C, IC = 10. Ig(lie) = 30 HEan RMSE(StDev)
 Number of realizations = 100
 13X9 grid of 2.5 degrees, 36 Observation points
Grid-to-cbs: FW Linear
 Bicub Spl
 PW Bicub
 B\subseteq1 Bicub
Obs-to-grid
\begin{tabular}{lll}
Opt Interp & 6.32 & 5.72 \\
\((\mathrm{Cd}=10)\) & \(6.17(1.36)\) & \(5.60(1.21)\)
\end{tabular}
```

Local OI
6.60
$(C d=10)$
$6.47(1.33)$
Barnes: $\quad 7.10$
2-Eass 6.95(1.45)
Barnes: $\quad 7.09$
(Lccal)
6.98(1.22)
6.05
$5.94(1.16)$
6.69
$6.55(1.39)$
6.54
$6.45(1.08)$

```
Stat Interf (Cd = 14)
Stat Interp (cd = 7)
Stat Int \(\in\) Ip
(Dafd Ccs)
```

Thin Pl SFl
6.31
$6.17(1.30)$
5.75
( $\mathrm{m}=2$ )
6.31
$6.17(1.30)$
$5.63(1.16)$

```
Lapl Sm Spl
(m = 3)
Frnke/Grdn
(3 Fass)
Pseudobarnos'
(2 Fass)
Pseudobarnes'
(Lccal)
```

```
E = 500, Theta = RANDCM, Delth = RANDOM, Entries: RMSE Analysis
Ig = 3C. IC = 10. IO(lie) = 5 Mean RMSE(StDev)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points
Grid-to-cbs: FW Linear Bicub Spl PW Bicub Bsl Bicub
Obs-to-grid
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Opt Int } \in I p \\
& (\mathrm{Cd}=10)
\end{aligned}
\] & \[
\begin{aligned}
& 7.51 \\
& 7.37(1.43)
\end{aligned}
\] & \[
\begin{aligned}
& 6.88 \\
& 6.74(1.38)
\end{aligned}
\] \\
\hline Local OI & 7.96 & 7.37 \\
\hline (\(C\) d \(=10\)) & 7.85(1.36) & 7.26 (1.27) \\
\hline Barnes \({ }^{\text {a }}\) & S. 81 & 9.28 \\
\hline 2-Eass & 9.60 (2.01) & 9.06 (1.99) \\
\hline Barnes' & 8.47 & 7.91 \\
\hline (Local) & 8.36 (1.32) & 7.80 (1.31) \\
\hline
\end{tabular}
Stat Interp
(Cd = 14)
Stat Int\inrp
(Cd = 7)
Stat Int\inIp
(Dafd Ccs)
\begin{tabular}{lll}
Thin Pl & SFl & 7.65 \\
\((m=2)\) & \(7.51(1.43)\) & 6.94 \\
& & \(6.80(1.39)\)
\end{tabular}
Lapl Sm Spl
(m = 3)
Frnke/Grdn
(3 Fass)
Pseudobarnss'
(2 Fass)
Pseudobarnes'
(Lccal)
```

TABLE 10

```
 E = 500, Theta = RANDCM, Delth = RANDOM, Entries: RMSE Analysis
 Ig = 30. IC = 5, IO(lie) = 10 Mean EMSE(StDEv)
 Number of realizations = 100
 13X9 grid of 2.5 degrees, 36 Observation points
```



| Grid-to-cbs: | EW Linear | Bicub Spl | PW Bicub | Bsl Bicub |
| :---: | :---: | :---: | :---: | :---: |
| Obs-to-grid |  |  |  |  |
| $\begin{aligned} & \text { Opt Int } \in I p \\ & (C d=1 C) \end{aligned}$ | $\begin{aligned} & 3.58 \\ & 3.44(1.01) \end{aligned}$ |  | $\begin{aligned} & 3.32 \\ & 3.18(0.94) \end{aligned}$ |  |
| $\begin{aligned} & \text { Local } 0 I \\ & (C d=10) \end{aligned}$ | $\begin{aligned} & 3.77 \\ & 3.63(1.02) \end{aligned}$ |  | $\begin{aligned} & 3.53 \\ & 3.40(0.9769 \end{aligned}$ |  |
| $\begin{aligned} & \text { Barnes } \\ & \text { 2-Eass } \end{aligned}$ | $\begin{aligned} & 4.44 \\ & 4.32(1.01) \end{aligned}$ |  | $\begin{aligned} & 3.98 \\ & 3.87(0.90) \end{aligned}$ |  |
| Barnes' (Lccal) | $\begin{aligned} & 6.26 \\ & 6.15(1.16) \end{aligned}$ |  | $\begin{aligned} & 5.73 \\ & 5.64(1.00) \end{aligned}$ |  |
| Stat Interf $(C d=14)$ | $\begin{aligned} & 3.61 \\ & 3.46(1.03) \end{aligned}$ |  | $\begin{aligned} & 3.41 \\ & 3.27(0.96) \end{aligned}$ |  |
| Stat Int Ir p $(C d=7)$ | $\begin{aligned} & 3.65 \\ & 3.50(1.03) \end{aligned}$ |  | $\begin{aligned} & 3.39 \\ & 3.25(0.97) \end{aligned}$ |  |
| Stat Interp <br> (Dafd Ccs) | $\begin{aligned} & 3.78 \\ & 3.62(1.07) \end{aligned}$ |  | $\begin{aligned} & 3.51 \\ & 3.36(1.02 \end{aligned}$ |  |
| Thin Pl spl $(m=2)$ | $\begin{aligned} & 4.00 \\ & 3.84(1.13) \end{aligned}$ |  | $\begin{aligned} & 3.85 \\ & 3.70(1.07) \end{aligned}$ |  |
| $\begin{aligned} & \text { Lapl Sm spl } \\ & (m=3) \end{aligned}$ |  |  |  |  |
| Frnke/Grdn <br> (3 Fass) |  |  |  |  |
| Pseudobarnes' (2 Fass) |  |  |  |  |
| Pseudobaines' <br> (Lccal) |  |  |  |  |


| ```= 500, Theta = RANDCM, DElth = RANDOM, Entries: RMSE Aralysis Ig = 30. IC = 0 Mear RMSE (StDEV)``` |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Number of realizations $=100$ |  |  |  |  |
| 13 X 9 grid | 2.5 degre | 6 Observat | points |  |
| Grid-to-cts: | EW Linear | Bicut Spl | PW Bicub | $B \leq 1$ Bicub |
| Obs-to-grid |  |  |  |  |
| $\begin{aligned} & \text { Opt InteIf } \\ & (\mathrm{Cd}=10) \end{aligned}$ | 6.06 |  | 0.74 |  |
|  | 5.84 (1.62) |  | 0.69 (0.27) |  |
| Local OI$(C d=10)$ | 3.86 |  | 2.40 |  |
|  | 3.79 (0.76) |  | 2.2.30(0.69 |  |
| $\begin{aligned} & \text { Barnes' } \\ & \text { 2-Pass } \end{aligned}$ | 9.38 |  | 8.96 |  |
|  | 9.16 (2.05) |  | 8.74 (1.98) |  |
| Barnes' <br> (Lccal) | 6.27 |  | 5.63 |  |
|  | 6.15(1.21) |  | 5.49 (1.23) |  |
| $\text { Stat In } \pm \in I p$$(C d=14)$ | 7.62 |  | 1.23 |  |
|  | 7.10(2.74) |  | 1.16 (0.40) |  |
| Stat InteIf$(C d=7)$ | 3.70 |  | 1.29 |  |
|  | $3.64(0.68)$ |  | 1.20 (0.48) |  |
| Stat Interf <br> (Dmpd Cos) | $\begin{aligned} & 4.48 \\ & 4.37(0.96) \end{aligned}$ |  | $\begin{aligned} & 1.03 \\ & 0.97(0.36 \end{aligned}$ |  |
|  |  |  |  |  |
| $\begin{aligned} & \text { Thir Pl SEI } \\ & (\mathrm{m}=2) \end{aligned}$ | $\begin{aligned} & 3.74 \\ & 3.66(0.78) \end{aligned}$ |  | $\begin{aligned} & 2.18 \\ & 2.02(0.83) \end{aligned}$ |  |
|  |  |  |  |  |
| $\begin{aligned} & \text { LaEl Sm SEl } \\ & (\mathrm{m}=3) \end{aligned}$ |  |  |  |  |
| Frrke/GIdn (3 Fass) |  |  |  |  |
| PseudoEarnes' <br> (2 Fass) |  |  |  |  |
| Pseudo Earnes <br> (Lccal) |  |  |  |  |


| $E=500$, Theta $=100$, Lelth $=0$ | Entries: RMSE Aralysis |  |
| :--- | :--- | :--- |
| $I G=30, ~ I O=10$ |  | Mean RMSE (SさDSV) |

Ig $=30, I O=10$
Mean RMSE ( $S \pm D E v$ )
Number of realizations $=100$
$11 \mathrm{BY} \varepsilon$ grid of 5 degrees, 67 observation points

| Grid-to-obs: | FW Linear | Bicuk Spl | PW Bicub | BsI Bicub |
| :---: | :---: | :---: | :---: | :---: |
| Obs-to-grid |  |  |  |  |
| opt Interp$(C d=10)$ | 12.84 | 7.62 | 7.93 | 8.11 |
|  | 12.74(1.62) | 7.53(1.19) | 7.84 (1.20) | 8.02(1.19) |
| $\begin{aligned} & \text { Local OI } \\ & (C d=10) \end{aligned}$ | 13.33 | 8.44 | 8.74 | 8.92 |
|  | 13.22(1.73) | 8.33 (1.33) | 8.63 (1.35) | 8.82(1.32) |
| $\begin{aligned} & \text { Barnes' } \\ & 2-\text { Pass } \end{aligned}$ | 14.33 | 10.62 | 10.82 | 10.95 |
|  | 14.21(1.85) | 10.49(1.70) | 10.68(1.70) | 10.81(1.71) |
| Barnes' <br> (Lccal) | 14.00 | 8.82 | 9.12 | 9.40 |
|  | 13.91(1.55) | 8.71 (1.36) | 9.79 (1.35) | 9.31 (1.33) |
| $\begin{aligned} & \text { Stat Interp } \\ & (C d=14) \end{aligned}$ | 13.75 | 8.80 | 9.02 | 9.20 |
|  | 13.25(1.57) | 8.70 (1.33) | 8.92 (1.31) | 9.10 (1.32) |
| Stat Interf$(C \dot{C} d=7)$ | 13.44 | 8.31 | 8.62 | 8.79 |
|  | 13.35 (1.63) | 8.23(1.18) | 8.53 (1.21) | 8.70(1.19) |
| Stat Interf <br> (Dmpd Cos) | 13.57 | 8.47 | 8.78 | 8.95 |
|  | 13.47(1.65) | 8.38 (1.25) | 8.68(1.27) | 8.86 (1.25) |
| $\begin{aligned} & \text { Thin PI SFl } \\ & (\mathbb{R}=2) \end{aligned}$ | 13.17 | 8.08 | 8.36 | 8.47 |
|  | 13.07(1.59) | 7.99 (1.17) | 8.27 (1.19) | 8.39 (1.19) |
| Lapl Sm Spl$(m=3)$ | 17.12 | 11.87 | 12.08 | 12.16 |
|  | 17.01(1.86) | 11.76 (1.60) | 11.97 (1.57) | 12.05 (1.58) |
| Frnke/Grdn <br> (3 Fass) | 17.29 | 15.23 | 15.31 | 15.36 |
|  | 17.14(2.29) | 15.04(2.35) | 15.13(2.34) | 15.17(2.37) |
| Pstudobarnes'14.27 |  | 10.62 | 10.82 | 10.95 |
| (2 Eass) | 14.14(1.87) | 10.49(1.70) | 10.69(1.70) | 10.82(1.71) |
| Fseudo Barnes' <br> (Lccal) | 13.89 | 9.73 | 10.00 | 10.17 |
|  | 13.77(1.82) | 9.60 (1.58) | 9.87 (1.58) | 10.05 (1.57) |

TABLE 14

## Estimat $\in$ and (empirical) RMS errors for statistical methods



TABLE 15
2.5 DEGREE GRID AND OBSERVATION LOCATIONS No 09
$75^{\circ} \mathrm{W}$
$85^{\circ} \mathrm{W}$
$95^{\circ} \mathrm{W}$

$$
65^{\circ} \mathrm{W}
$$


3
0
0
$N{ }_{0}$ OS


$\mathrm{NaOL}^{\mathrm{r}}$

Figure
5 DEGREE GRID AND OBSERVATION LOCATIONS

Figure 2


Figure 3

T3: $R G=30, R O=10,13 \times 92.5$ DEGREE GRID


Figure 4

T5: $R G=20, R O=10,13 \times 92.5$ DEGREE GRID


Figure 5

T6: $R G=30, R O=5,13 \times 92.5$ DEGREE GRID


Figure 6

T7: $R G=30, R O=10,13 \times 92.5$ DEGREE GRID


Figure 7

T14: $R G=30, R O=10,11 \times 85$ DEGREE GRID


Figure 8


Figure 9
$R G=30,13 \times 92.5$ DEGREE GRID


Figure 10


Figure 11

PERFORMANCE DEGRADATION, RG $=30$, RO $=5$

?゙igure 12


Figure 13

SST. FOR ENV. SCIENCES SST. SEC. OF THE NAVY (R\&D) 00M 5E731, THE PENTAGON ASHINGTON, DC 20350

OMMANDING OFFICER
ORDA
STL, MS 39529

AVAL POSTGRADUATE SCHOOL ETEOROLOGY DEPT.
ONTEREY, CA 93943

OMMANDER AVAIRSYSCOM
TTN: LIBRARY (AIR-7226)
ASHINGTON, DC 20361
(2)

NAVAL POSTGRADUATE SCHOOL OCEANOGRAPHY DEPT. MONTEREY, CA 93943

COMMANDER
NAVAIRSYSCOM (AIR-330)
WASHINGTON, DC 20361

SUPERINTENDENT
ATTN: USAFA (DEG)
USAF ACADEMY, CO 80840

AFGL/OPI
HANSCOM AFB, MA 01731

DIRECTOR
(2)

DEFENSE TECH. INFORMATION CENTER, CAMERON STATION
ALEXANDRIA, VA 22314

ACQUISITIONS SECT. IRDB-D823
LIBRARY \& INFO. SERV., NOAA 6009 EXECUTIVE BLVD. ROCKVILLE, MD 20852

OFFICE OF NAVAL RESEARCH CODE 422AT
ARLINGTON, VA 22217

SUPERINTENDENT LIBRARY REPORTS
U.S. NAVAL ACADEMY ANNAPOLIS, MD 21402

LIBRARY
NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

COMMANDER NAVOCEANSYSCEN DR. J. RICHTER, CODE 532 SAN DIEGO, CA 92152

AFGWC/DAPL
OFFUTT AFB, NE 68113

OFFICER IN CHARGE SERVICE SCHOOL COMMAND
DET. CHANUTE/STOP 62
CHANUTE AFB, IL 61868

NOAA-NESDIS LIAISON
ATTN: CODE SC2
NASA-JOHNSON JPACE CENTER
HOUSTON, TX 77058

DIRECTOR
OFFICE OF PROGRAMS RX3
NOAA RESEARCH LAB
BOULDER, CO 80302

WATIONAL WEATHER SERVICE
WORLD WEATHER BLDG., RM 307
5200 AUTH ROAD
CAMP SPRINGS, MD 20023

DIRECTOR
TECHNIQUES DEVELOPMENT LAB GRAMAX BLDG.
8060 13TH ST.
SILVER SPRING, MD 20910

COLORADO STATE UNIVERSITY ATMOSPHERIC SCIENCES DEPT.
ATTN: DR. WILLIAM GRAY
FORT COLLINS, CO 80523

CHAIRMAN, METEOROLOGY DEPT. CALIFORNIA STATE UNIVERSITY
SAN JOSE, CA 95192

UNIVERSITY OF WASHINGTON ATMOSPHERIC SCIENCES DEPT.
SEATTLE, WA 98195

UNIVERSITY OF HAWAII
METEOROLOGY DEPT. 2525 CORREA ROAD HONOLULU, HI 96822

UNIVERSITY OF MARYLAND METEOROLOGY DEPT.
COLLEGE PARK, MD 20742

CHAIRMAN, METEOROLOGY DEPT. UNIVERSITY OF UTAH
SALT LAKE CITY, UT 84112

OIRECTOR
NATIONAL SEVERE STORMS LAB 1313 HALLEY CIRCLE NORMAN, OK 73069

LABORATORY FOR ATMOS. SCI. NASA GODDARD SPACE FLIGHT CEN. GREENBELT, MD 20771

ATMOSPHERIC SCIENCES DEPT. UCLA
405 HILGARD AVE.
LOS ANGELES, CA 90024

COLORADO STATE UNIVERSITY ATMOSPHERIC SCIENCES DEPT. ATTN: LIBRARIAN
FT. COLLINS, CO 80523

CHAIRMAN, METEOROLOGY DEPT. PENNSYLVANIA STATE UNIV. 503 DEIKE BLDG. UNIVERSITY PARK, PA 16802

DIRECTOR
COASTAL STUDIES INSTITUTE LOUISIANA STATE UNIVERSITY
ATTN: O. HUH
BATON ROUGE, LA 70803

CHAIRMAN
ATMOS. SCIENCES DEPT. UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VA 22903

ATMOSPHERIC SCIENCES CENTER DESERT RESEARCH INSTITUTE P.O. BOX 60220 RENO, NV 89506

DIRECTOR
GEOPHYS. FLUID DYNAMICS NOAA, PRINCETON UNIVERSI P.O. BOX 308

PRINCETON, NJ 08540

EXECUTIVE SECRETARY, CAO SUBCOMMITTEE ON ATMOS. S( NATIONAL SCIENCE FOUNDAT RM. 510, 1800 G. STREET, WASHINGTON, DC 20550

CHAIRMAN, METEOROLOGY DEF UNIVERSITY OF OKLAHOMA NORMAN, OK 73069

NATIONAL CENTER FOR ATMOs
RSCH., LIBRARY ACQUISI P.O. BOX 3000 BOULDER, CO 80302

FLORIDA STATE UNIVERSITY ENVIRONMENTAL SCIENCES DE TALLAHASSEE, FL 32306

ATMOSPHERIC SCIENCES DEP1 OREGON STATE UNIVERSITY CORVALLIS, OR 97331

CHAIRMAN
METEOROLOGY DEPT.
MASSACHUSETTS INSTITUTE TECHNOLOGY
CAMBRIDGE, MA 02139

ATMOSPHERIC SCI. RSCH. CE NEW YORK STATE UNIV. 1400 WASHINGTON AVE. ALBANY, NY 12222

TS \& APPLIED SCI. CORP.
LIBRARY, SUITE 500 EENILWORTH AVE.
JALE, MD 20840

ROLOGY INTL., INC. $30 \times 22920$
-, CA 93922

DATA SYSTEMS, INC.
GARDEN ROAD
REY, CA 93940

OF MATHEMATICS POSTGRADUATE SCHOOL
REY, CA 93943

CHARD LAU
OF NAVAL RESEARCH
EAST GREEN ST.
NA, CA 91106
$Y$, FLEET NUMERICAL(2)
NOGRAPHY CENTER
EY, CA 93943

SOR W.J. GORDON FOR SCIENTIFIC
UTATION \& INTERACTIVE HICS
UNIVERSITY
ELPHIA, PA 19104

CENTER FOR ENV. \& MAN, INC. RESEARCH LIBRARY
275 WINDSOR ST.
HARTFORD, CT 06120

CONTROL DATA CORP.
METEOROLOGY DEPT. RSCH. DIV.
2800 E. OLD SHAKOPEE RD.
BOX 1249
MINNEAPOLIS, MN 55440

EUROPEAN CENTRE FOR MEDIUM RANGE WEATHER FORECASTS SHINFIELD PARK, READING BERKSHIRE RG29AX, ENGLAND

PROFESSOR G. LATTA, CODE 53LZ CHRMN, DEPARTMENT OF MATH NAVAL POSTGRADUATE SCHOOL MCNTEREY, CA 93943

PROFESSOR R.E. BARNHILL DEPARTMENT OF MATHEMATICS UNIVERSITY OF UTAH
SALT LAKE CITY, UT 84112

DR. EDWARD BARKER (10)
NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY
MONTEREY, CA 93943

MS. LINDA THIEL
DEPARTMENT OF MATHEMATICAL SCIENCES
DREXEL UNIVERSITY
PHILADELPHIA, PA 19104

PROFESSOR P.A. JACOBS
DEPARTMENT OF OPERATIONS RESEARCH
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

METEOROLOGY RESEARCH, INC. 464 W. WOODBURY RD. ALTADENA, CA 91001

SCIENCE APPLICATIONS, INC. 205 MONTECITO AVENUE MONTEREY, CA 93940

DEAN OF RESEARCH

## CODE 012

NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

PROFESSOR R. FRANKE, CODE 53FE(15 DEPARTMENT OF MATHEMATICS NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

PROFESSOR G.M. NIELSON DEPARTMENT OF MATHEMATICS ARIZONA STATE UNIVERSITY TEMPE, ARIZONA 85281

DR. THOMAS ROSMOND
NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY MONTEREY, CA 93943

PROFESSOR GRACE WAHBA DEPARTMENT OF STATISTICS UNIVERSITY OF WISCONSIN MADISON, WI 53705

PROFESSOR H. JEAN THIEBAUX DEPARTMENT OF MATHEMATICS, STATISTICS \& COMPUTING SCIENCE DALHAUSIE UNIVERSITY HALIFAX, NOVA SCOTIA, CANADA 133 H 4 H 8

DR. R.S. SEAMAN AUSTRALIAN NUMERICAL METEOROLOGY RESEARCH CENTRE P.0. BOX 5089AA MELBOURNE, VICTORIA, AUSTRALIA, 3001

DR. LAWRENCE BREAKER DEPARTMENT OF OCEANOGRAPHY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

PROFESSOR PETER ALFELD
DEPARTMENT OF MATHEMATICS UNIVERSITY OF UTAH
SALT LAKE CITY, UT 84112

PROFESSOR MARK E. HAWLEY
DEPARTMENT OF ENVIRONMENTAL SCIENCES
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VA 22903



[^0]:    TABLE 4

